5^2x-1=1/125

Simple and best practice solution for 5^2x-1=1/125 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 5^2x-1=1/125 equation:



5^2x-1=1/125
We move all terms to the left:
5^2x-1-(1/125)=0
We add all the numbers together, and all the variables
5^2x-1-(+1/125)=0
We get rid of parentheses
5^2x-1-1/125=0
We multiply all the terms by the denominator
5^2x*125-1-1*125=0
We add all the numbers together, and all the variables
5^2x*125-126=0
Wy multiply elements
625x^2-126=0
a = 625; b = 0; c = -126;
Δ = b2-4ac
Δ = 02-4·625·(-126)
Δ = 315000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{315000}=\sqrt{22500*14}=\sqrt{22500}*\sqrt{14}=150\sqrt{14}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-150\sqrt{14}}{2*625}=\frac{0-150\sqrt{14}}{1250} =-\frac{150\sqrt{14}}{1250} =-\frac{3\sqrt{14}}{25} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+150\sqrt{14}}{2*625}=\frac{0+150\sqrt{14}}{1250} =\frac{150\sqrt{14}}{1250} =\frac{3\sqrt{14}}{25} $

See similar equations:

| 8^2x=64 | | 4p+9=7p-12 | | 5^x-1=5^2 | | 4m-12=12-4m | | X+6/2+3x/8=17 | | (x-8)(x+10)=40 | | -19x+18+25x-33=35 | | (2/9)^3×(2/9)^-6=(2/9)^2m-1 | | 7d-3=d-9 | | 2v-8=v+17 | | M-4=m2 | | 2e+1=3e+1 | | -6r=-3(r+8) | | 2/3(x+9)=15 | | 2/3(x+9=15 | | 124.50=20(x+4)+3/4x+3 | | 4(q+12)=4(q+8) | | X^3-x^2+5x+2=0 | | 1/2-5/8c=7/8c+7/2 | | 2x-(+5)=3 | | (x+6)(x)=14*6 | | 2/3s-6=6-2/3s | | 7(-3j+2)=8(3j-2) | | 1/8=s3/4 | | 4x+40=3x+100 | | 144=-8x2x | | 6(a-1)=3(3a+5) | | 8(2b-2)=7(3b+2) | | 9x^2-30x-32=0 | | 9x^2-15x-3=0 | | 2n-5n=7 | | 22=(5/12*29)+x |

Equations solver categories